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The hydrothermal syntheses, X-ray single-crystal stiuctures,
and some properties of Ba(V0)x5e0,),(HSe0,), and Bay(VO),
(PO,),(HPO,),; - 3H,0 are described. Ba(V0),(Se0;),(HSeO,),
contains a three-dimensional network of VO, and (H)SeO; poiyhe-
dra, linked via V-0O-Se bonds. The Ba cation is 10-coordinate,
the VO, group contains a short vanadyt V=0 bond typicat of V¥,
and the (H)SeO; groups are pyramidal. Magnetic susceptibility
data are cousistent with VIV and show paramagnetic behavior from
4 to 300 K. Crystal data for Ba(VO0),(Se0,),(HSeQ;),: M, = 781.06,
monoclinic, space group P2,/c (No. 14), @ = 9.680(3) A, b =
7.024(2) A, ¢ = 9.882(4) A, B = 116.42(3)°, V= 6017543, Z =
2, R = 3.89%, R, = 3.64% [1637 observed reflections with I >
3o (D). Bag(VO),(PO,);(HPO,),; - 3H,0 contains a complex net-
work of VO, and PO,/HPO, groups, which form two different
types of one-dimensional chains: one chain contains fairly regular
VYO, and (H)PQ, groups; the other is built up from distorted
VYO, octahedra and (hydrogen) phosphate groups. 10- and 13-
coordinate Ba** cations complete the structure, which shows anti-
ferromagnetic ordering of the VIV centers at ~20 K. Crystal data
for Bay(VO)(PO,),(HPO,);, ' 3H,0: M, = 2800.05, monoclinic,
space group C2/m (No. 12), 2 = 31.685(11) A, b = 5.208(2) A,
e = 1.784(3) A, B = 90.593)°, V = 1284.5N A, Z = 1,
R = 4.03%, and R,, = 5.28% [1892 observed reflections with I >
Jo(I)].  © 1995 Academic Press, Inc.

INTRODUCTION

Materials containing microporous frameworks built up
from units other than just tetrahedra are currently of inter-
est (1-3), especially with respect to their potentially useful
physical properties which might complement those of alu-
minosilicate zeolite molecular sieves. A notable family of
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molybdenophosphate (MoPQ) phases has been character-
ized by Haushalter and co-workers (4): Some of these
MoPOs are analogues of known structures, but many form
new framework types (5). The possibility of different oxi-
dation states for the Mo cation is an important feature of
MoPO structural chemistry (5). In these MoPO materials,
the Mo cation usually adopts octahedral coordination.

A system with structural possibilities similar to MoPQ’s
is the vanadium-phosphate (VPQO) combination. Vana-
dium may exist in oxidation states 111, IV, and V in the
solid state, and may adopt square pyramidal, octahedral,
or even tetrahedral coordination, Jeading to a great variety
of potential polyhedral connectivities. New VPO phases
may complement known vanadium phosphates, including
layered materials such as VOPO, - 2H,0 (6), which under-
goes a novel redox/intercalation reaction (7), leading to
new structures such as Na, ,,VOPO, - 2H,0 (8). When me-
tallic (9) or organic cations (10) are combined with vana-
dium and phosphate, a vast variety of M/V/P/O materials
are possible (11-13).

In this paper we report the preparations, crystal struc-
tures, and some properties of two new barium/vanadium
phases. Ba(V0),(SeQ;).(HSe,), is the first cation-vana-
dium{IV)—selenite phase to be characterized, and indi-
cates the structural possibilities of a vertex-linked, an-
ionic, octahedral/pyramidal  network. VOSeO;-H,0
[vanadivm(IV)] was previously characterized (14) and has
a ¢rystal structure related to the layered vanadium hydro-
gen phosphate, VOHPO, iH,O (15). Bag(VOX,(PO,);
(HPO,),, - 3H,0 has a complex structure containing two
distinct types of chains of vertex-linked V'VO, octahedral
and (HYPO, tetrahedral groups.

SYNTHESIS AND PHYSICAL CHARACTERIZATION

Green, platy, single crystals of Ba(V0),(5e0;),
(HS¢0,); were prepared in approximately 75% yield from
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a reaction mixture of initial composition 0.4 g V,0;
{98 + %, Aldrich), 0.045 g V (99.5%, Aldrich), 0.693 g
Ba(OH), - 8H,0 (99.9%, Aldrich), 2.0 g SeO, (99%, Ald-
rich), and 10 ml of distilled water. The reactants were
sealed in a Teflon-lined Parr hydrothermal bomb and
heated to 200°C for 4 days. The bomb was then slowly
cooled to room temperature over a 2-day period, and the
contents of the bomb recovered by vacuum filtration.
Ba(V(),(8¢0,),(HSeQ,), is air-stable.

Single crystals of Ba(VO),(PO,)(HPO,},, - 3H,0 were
synthesized from the reaction of 0.220 g V,04 (98 + %,
Aldrich), 0.0137 g V (99.5%, Aldrich), 0.6 mi H;PO, (85%,
Fisher), 0.846 g Ba(OH), - 8H,0 (99.9%, Aldrich), and 10
ml of distilled water. This mixture was heated to 230°C
for 4 days in a 23-ml Parr bomb, and then cooled to
ambient temperature over a 2-day period. Vacuum filtra-
tion recovered a ~75% yield of intergrown green plates,
which appear to be indefinitely stable in air,

Preliminary X-ray powder data for both phases revealed
complex, low-symmetry patterns unlike those of other
(Ba)/V/(P/S¢)/O phases or of the reaction starting materi-
als. ““Autoindexing’ attempts were inconclusive. Ther-
mogravimetric analysis (TGA) for Ba(VO),(SeO,),
(HSe0,), was carried ont on a small sample isolated from
the reaction noted above. The sample was heated to
600°C under flowing oxygen, with a ramp rate of 2°C/min.
The observed weight loss of 56.9(2)% ({calc. 57.1%)
corresponded to the complete transformation of
Ba(V0),(Se0;),(HSe0;), to a physical mixture of
Ba,V,0; and V,0;, as confirmed by powder X-ray
analysis of the post-TGA residue. TGA data for
Bag(VO),(PO,),(HPO,),, - 3H,O were collected on a
DuPont 9900 system: An overall 4.8(2)9% weight loss
resulted, in {wo steps, between 470 and 500°C, in fair
agreement with the weight loss calculated (5.2%) for the
transition:

Bag(VO)(PO,),(HPO,), - 3H,0 -5
“BagVP 305" + 81H,0.

Infrared data for Ba(VO),(SeD,),(HSeO,), and
Ba, (VO),(PO),(HPO,),, - 3H,0 were collected on a Gal-
axy FTIR 5000 Series spectrometer, using a standard KBr
pellet method in each case. Magnetic susceptibility data
for Ba(V0),(Se0,),(HSe(,), (51.3 mg of isolated single
crystals) and Bay,(VO)(PO,)L(HPO,)y, - 3H,0 (16.7 mg of
crystals) were obtained between 4.2 and 300 K in an ap-
plied field of 6 kG using a Quantum Design Model MPMS
SQUID magnetometer. Ferromagnetic impurity contribu-
tions to the magnetic susceptibility were measured and
corrected for by using magnetization isotherms obtained
at 77 and 298 K.

CRYSTAL STRUCTURE DETERMINATION

The erystal structure of Ba(V0),(5¢0,),(HS20,), was
determined from single-crystal X-ray diffraction data: A
light-green, irregular plate (dimensions ~0.4 x 0.3 x 0.02
mm) was mounted on a thin glass fiber with cyanoacrylate
adhesive, and room-temperature [25(2)°C] intensity data
were collected on an Enraf-Nonius CAD4 automated 4-
circle diffractometer (graphite-monochromated MoK« ra-
diation, A = 0.71073 131). After locating and centering 25
reflections (8° < 28 < 17°), the unit cell constants were
optimized by a least-squares refinement, resulting in
monoclinic lattice parameters of a = 9.680(3) A, b =
7.024(2) A, ¢ = 9.882(4) A, and 8 = 116.42(3)° (esd’s in
parentheses). Intensity data were collected in the «-26
scanning mode with standard reflections monitored for
intensity changes throughout the course of the experi-
ment (negligible variation observed). The scan speed var-
ied from 1.1°-3.4°/min with a scan range of 0.9 + 0.35
tan 8, extended by 23% on either side of the peak for
background determination, for a total of 2546 data col-
lected (20 <70° —15=h=13,0=k=11,0=1=12).
The systematic absences in the reduced data (h0l, [ # 2n;
0k0, k& # 2n) indicated space group P2,/c (No. 14).

The crystal-structure model of Ba(VQ)«(Se(,),
(HSe0,), was developed in space group P2,/c, with
heavy-atom positions (Ba, V, Se) located using the direct-
methods program SHELXS-86 {16). The oxygen-atom po-
sitions were located from Fourier difference maps during
the refinement. After isotropic refinement, an empirical
absorption correction (DIFABS) (17} was applied (mini-
mum correction = 0.90, max = 1.51}, The final cycles of
full-matrix least-squares refinement were against £ and
included anisotropic temperature factors (isotropic for H)
and a Larson-type secondary extinction correction (13)
[refined value: 10(2)]. The H-atom position was located
geometrically [d{O-H) = 0.95 A], and complex, neutral-
atom scattering factors were obtained from the “*Interna-
tional Tables'” (19). At the end of the refinement, residuals
of R = 3.89% and R,, = 3.64% (w; = l/a?) resulted, and
analysis of the various trends in F, versus ¥, revealed no
unnsual effects. The least-squares, Fourier, and subsid-
iary calculations were performed using the Oxford CRYS-
TALS system (20), running on a DEC MicroVAX 3100
computer. Crystallographic data for Ba(V0),{SeO;),
{HSe0,), are summarized in Table I.

The crystal structure of Bag{VO)(PQ,),(HPO,) - 3H,0
was established in similar fashion: A platy crystal, of
dimensions ~0.4 x 0.3 x 0.03 mm, was mounted on a
thin glass rod with epoxy cement, and room temperature
[25(2)°C] intensity data were collected on a Siemens/Nico-
let automated 4-circle diffractometer (graphite-monochro-
mated MoKa radiation, A = 0.71073 A). After locating
and centering 26 reflections (15° < 28 < 29°), unit cell
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TABLE 1
Crystallographic Parameters

Ba(V0),(Se0,),(HSe0,), Bag(VO)(PO)(HPOY),, - 3H,0

Empirical formula Ba,Se,V,0,H; BagVeP ;05 Hyz

Formula wi, 781.06 2800.05
Habit Light green plate Green plate
Crystal system Monaclinic Monoclinic
a(A) 9.680(3) 31.685(11)
b (A) 7.024(2) 5.208(2)

¢ (&) 9.882(4) 7.784(3}
B 116.42(3) 50.59(3}

v (AY 601.75 1284.5

Z 2 1

Space group P2/ (No. 14) C2/m (No. 1)
PN 25(2) 25(2)
AMMoKa) (A) 0.71073 0.71073
Peac (gfem?) 4.31 3.62

# (MoKa) cm™Y 167.70 75.72
Absorption cory. DIFABS -Scan
Extinction corr. 1002 2102y

Min., Max. ap (e/A} —1.43, +2.21 —1.75, +3.27
Total data 2546 2071
Observed data? 1637 1892
Parameters 98 127

R(F)? (%) 3.89 4.03

R (F) (%) 3.64 5.28

2 f > 3ol
PR = 100 x I|F,| — |FJ/ZIF.
SR, = 100 x [Zw(F,) — |F)MEw|F 1Y, with w, = Vol

constants were optimized by least-squares refinement,
resulting in monoclinic lattice parameters of a =
31.685(11) A, b = 5.208(2) A, ¢ = 7.784(3) A, and
B = 90.59(3)° (esd’s in parentheses). Intensity data were
collected in the w-26 scanning mode with standard reflec-
tions monitored for intensity changes throughout the
course of the experiment {< +2% variation observed).
The scan speed varied from 1.5°-14.7°/min, and a total
of 2071 intensity maxima were scanned (26 < 60°; —44 <
h=44,0=<k=7,0=]=10). The systematic absences
in the reduced data (hkl, b + k # 2n; hOI, b # 2n; Ok,
k ¥ 2n) indicated space groups C2 (No. 5) or C2/m
(No. 12).

The structure of Bag(VO)(PO,},(HPO,),, - 3H,0 was
successfully developed in the centrosymmetric space
group C2/m, which was assumed for the remainder of
the crystallographic analysis. Initial heavy-atom positions
{Ba, V) were located by using SHELXS-86, and the P
and O atom positions were located from Fourier differ-
ence maps during the refinement. The final cycles of full-
matrix least-squares refinement were against F and
included anisotropic temperature factors (isotropic for
the disordered species) and a Larson-type secondary ex-
tinction correction (refined value: 21(2)]. Complex, neu-
tral-atom scattering factors were obtained from the *‘In-
ternational Tables.”” Some of the atom positions were
disordered, as noted below, and no hydrogen-atom posi-
tions could be definitively located. Reducing the crystal

symmetry to C2 was tried, but this led to unstable refine-
ments, and did not resolve the disorder problems. At
the end of the refinement (software: CRYSTALS), resid-
uals of R = 4.03% and R, = 5.28% (w; = o}
resulted; analysis of the various trends in F, versus F,
revealed no unusual effects. Crystallographic data for
Bag(VO)(PO,),(HPO,),, - 3H,0 are summarized in Table 1.

Crystal Structure of Ba(V0),(8e0,),(HSe0,);

Final atomic positional and equivalent isotropic thermal
parameters for Ba(V0),(Se0,),(HSeOs), are listed in Ta-
ble 2, with selected bond distance/angle data given in
Table 3. Ba(V0),(8¢0,),(HSe,), is a three-dimensional
phase built up from vertex-sharing VO, and (H)SeO,
units. The V/Se/O asymmetric unit and labeling scheme
of Ba(V0),(Se0,),(HSe0,), is shown in Fig. 1, and the
complete crystal structure is illustrated in Fig. 2.

Ba(V0),(8e0,),{HSeO,), is the first example of a bar-
ium-vanadium(IV)-selenite, and the component species
(I Ba, [ V,28e,70, I H) show typical crystallochemical
behavior. The barium cation (site symmetry 1) is coordi-
nated by 10 oxygen atoms within 3 A, with a 4, (Ba-0)
of 2.877(2) A, in tetra-capped octahedral geometry (Fig.
3): the four capping oxygen atoms [0Q(2), 02", O(5},
O(57)] form the in-layer Ba—-O bonds described below,
while the three bonds to O(3), O(4), and O(6) [and O(3"),
0(4"), and O(6')] bond to the V/Se/0O layer above (below).

The vanadium cation [d,,(V-0) = 1.989(3) Al shows a
short vanadyl V=0 bond (d = 1.614(6) A), characteristic
of V¥ or VY (11), and its other five oxygen-atom vertices
arc connected to nearby Se cations (8, (V-0-8e) = 126°).
Vanadium(IV) was assigned to the oxidation state of this
atom based on several experimental criteria: The green
color of Ba(V0),(SeO,),(HSeO,), is typical of VIV-con-

TABLE 2
Atomic Positional and Thermal Parameters for
Ba(VO);(Se0;),(HSe0;),

Atom X y z U”
Ba(l) ) 0 1 0.0100
V(1) 0.7053(1) 0.0293(2) -0.0552(1) 0.0073
Se(1) 1.05587(9) —0.0739(1) 0.18986(8) 0.0089
Sef2) 0.68640(8) 0.0080(1) 0.25328(7) 0.0070
o) 0.9281(6) 0.0912(7) 0.0826(5) 0.0091
e]p))] 0.6509(6) 0.1529(7) 0.1023(6) 0.0088
o) 0.4946(6) 0.0666(8) —0.2182(5) 0.0118
o) 0.7212(6) 0.3384(7) —0.1033(5) 0.0100
o 0.7740(6) —-0.0218(7 —0.2182(5) 0.0084
0(6) 0.6962(6) —0.1880(7) —0.0066(6) 0.0125
o7 1.0529(6) —0.0016(7) 0.3568(6) 0.0135
H(1) 1.1327(6) —0.0580(7) 0.4439(6) 0.0200°

a Ueq (;22) = (U]U2U3)”3-
¥ U, (AY (not refined).
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TABLE 3
Bond Distances (A) and Angles (°) for Ba(V0),(Se0,),(HSe0;),

HARRISON ET AL.

Ba(1)-0(2) x 2
Ba(l)-0(4) x 2
Ba{1)-0(6) x 2

Y(1)-0(1)
Y{DH-003)
V({1)-0(5)

Se(1)-0(1)
Se(1)}~O(7)
Se(2)-0(3)

O{4)-H(1)

O-v(1)-0)
O2)-V(1)-003)
OD-Vi)-04)
O(N-V(1)-0(5)
G3)-V(H)-0(5)
O(1)-V(1)-0(6)
O3-V(1)-0(6}
O(3)-V(1)-0(6)

O(1)-Se(1)-0(5)
O(5)-Se(1)-0(7)
0(2)-Se(2)-0(4)

V(1)-0(1)-Se(t)
V(1)-03)-Se(2)
V{1)-005)-5e(1)

2.791(5)
29775
2.920(5)

2.020(5)
1.975(5)
2.030(5)

1.683(5)
1.738(5)
1.710(5)

1.747

87.4(2)
92.4(2)
79.4(2)
86.8(2)
8172
100.7(2)
101.2(3)
98.6(2)

102.7(2)
98.8(2)
103.902)

122.8(3)
135.9(3)
116.1(3)

Ba(1)-0(3) x 2
Ba(1)-O(5) x 2

V(1)-0(2)
V(1)-0(4)
V(1)-0(6)

Se(1)-0(5)
Se(2)-0(2)
Se(2)-0(4)

O(7)-H(1)

O()-V{1)-0(3}
O(D-V(1}-0(4)
O(3)-V(1)-0(4)
0Q)-V(1)-0(5)
O4)-V(D-0(5)
O(2)-V(1)-0(8)
Od)-V(1)-0(6)

O()-Se()-O(7)
0(2)-5¢(2)-0(3)
0(3)-Se(2)-04)

V(1)-0(2)-Se(2)
V(1)-O(4)-Se(2)

2.847(5)
2.871(5)

2.045(5)
2.243(5)
1.614(5)

1.683(5)
L710(5)
1.691(5)

0.95

157.92)
T7.42)
80.5(2)

164.9(2)
85.7(2)
96.2(2)

175.22)

94.5(2)
102.5(2)
99.8(3)

1H3.1(2)
142.0(3)

¢ H-bond contact.

FIG. 1.

ORTEP view of the V/Se/0Q asymmetric unit of Ba(VQ),

(Se0;),(HSe0,);, showing the atom-labeling scheme (50% thermal ellip-

ses; arbitary radius for proton).

FIG. 2. Unit-cell packing of Ba(VOL(SeO3),{HSeQ,),, viewed ap-
proximately down [100], showing the pseudo-1010) sheet structure, con-
nected via O(4) centers (dotted lines indicate H bonds; Ba~Q bonds
not shown).

taining phases (21), and the magnetic susceptibility data
(vide infra) are completely in accordance with isolated "
sites. A Brese—(’Keefe bond valence sumn (BVS) calcula-
tion (22) found a BVS of 4.2 for the vanadium atom, and
consideration of charge-balancing criteria also indicated
vanadium(IV), with no evidence for partial occupancy of
the other atomic sites, or any other features which would
indicate the presence of vanadium(V) at the V-atom site.

Q(3) 0(4)

(27)

047}

Q{37

FIG. 3. Ba(l) coordination polyhedron in Ba(VO}{SeO:h(HSeOs),,
with nonbonding O- - -O contacts <4.0 A indicated by thin lines (see
text). O atoms are represented by spheres of arbitrary radius.
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® V(1)

FIG. 4. [101] slice of the crystal structure of Ba(V0Q),(SeO;),
(HSeO,);, at y ~ 0, showing the V/Se/Q chains propagating in the a-
direction, crosslinked by H bonds and links to the Ba cation (dotted
lines).

Thus, Ba(VO})(5e0,),(HSeO,), contains vanadium only
in the V!V oxidation state.

Both selenium atoms are three-coordinate by oxygen
atoms, and show the characteristic S¢0, pyramidal con-
figuration, with the missing tetrahedral vertex occupied
by the Se!¥ lone pair. Se(I) makes two Se-O-V links,
and one terminal Se—~OH bond, and Se(2) makes three
Se-0-V bonds. The average Se—O distance of 1.703(3) A
is typical, and the Se-OH bond is somewhat length-
ened, as observed in other hydrogen selenite groups
(23-25). A structurally significant H bond is formed by
the Se—~OH entity (see below).

The polyhedral connectivity in Ba(V0},(Se0,),
(HSe(O:), leads to a three-dimensional V/Se/O network
incorporating the ‘‘guest”’ Ba?* cations. The structure
(Fig. 4) includes pseudo-one-dimensional strings of adja-
cent VO groups linked by pairs of Sef1} or Se(2) selenite
groups, which propagate in the a-direction. These strings
are crosslinked via Se(1)-O(7)-H(1)- - -O(4)-8e(2) H-
bonding, and Ba—O bonds, forming sheets in the [101]
plane. Finally, these sheets are connected to each other in
the b-direction by V(1)-0(4)-Se(2) bonds, and additicnal
Ba-Q links, completing the three-dimensional structure.
The layers are offset with respect to each other in the
[101] plane, and there are no particular channels apparent
in the V/Se/O network in Ba(V0),(SeQ,),(HSe0,),. This
structure is more closely related to layered V/P/O materi-
als than to three-dimensional microporous *“‘zeolitic’
frameworks.

Crystal Structure of Bag(VO){(PO),(HPO),, - 3H,0

Final atomic positional/thermal parameters for
Bag(VO)(PO),(HPO),, - 3H,0 are presented in Table 4,

with selected geometrical data given in Tables 5and 6. The
asymmetric units and complete structures of BagVO),
(PO,),(HPO,),, * 3H,0 are illustrated in Figs. 5 and 6 re-
spectively. Bag(VO),(PO,),(HPO,),, - 3H,0 is a complex
phase built up from VYO, and (H)PO, groups. There are
2 crystallographically distinct Ba cations {10- and 13-coor-
dinated), 2 octahedral vanadium centers, 4 phosphorus
atoms, and 13 oxygen atoms. Some of these atomic spe-
cies are disordered, as shown in Table 4.

Ba(l) is 10-coordinated by oxygen-atom neighbors,
with a d,, (Ba—0) of 2.872(2) A, and a BVS of 2.20. Its
coordination approximates a pentagonal! antiprism (Fig.
7), although the Ba(l) site symmetry is only m (through
atoms O(3), Ba(1), and O(9") at y = 4). Ba(2) is 13-coordi-
nated by nearby oxygen atoms within 3.1 A, in roughly
“5 + 5 + 3" geometry, with an average Ba—O contact
of 2.919(5) A. The Brese-O’Keefe BVS value for this
atom is significantly greater than 2.00 (2.64), mostly be-
cause of the very short Ba(2)—0(21) bond iength. Atom
O(21) is part of the disordered P(4)0, group, and its loca-
tion is less certain than the other atoms bound to Ba(2);
thus this BVS value should be treated with caution. The
Ba(2) site symmetry is also m; atoms Ba(2), O(10), O(11),
and O(21} sit on the mirror plane at y = 0 (Fig. 8). Adjacent
Ba(1l) atoms are linked via O(9) into infinite double chains

TABLE 4
Atomic Positional and Thermal Parameters for
Bag(VO),(PO,),(HPO,);, - 3H,0

Atom X ¥ z Uy’
Ba(1) 0.19079(2) 1 0.47754(6) 0.0113
Ba(2) 0.10389(2) 0 0.21964(6) 0.0150
V() 0 0 4 0.0181
V(2) 0.17576(5) i 0.9749(2) 0.0094
P(1) 0.06602(8) 3 0.4682(3) 0.0137
P(2) 0.21734(7) 1 1.1894(3) .0086
P(3} 0.15396(7) 0 0.7303(3) 0.0099
P 0.9837(5) 1 0.080(2) 0.035¢3)°
o) 0.0423(2) 0.257(1) 0.42196) 0.0204
o2) 0.0246(3) 0 0.724(1) 0.0363
O3} 4.107%2) 3 0.3757(8) 4.0170
O4) 0.0749(3) H 0.6717(9) 0.0305
s) 0.188%1) 0.7630(9) 1.1604(5) 0.0133
Q(6) 0.1263(2) 3 1.0099(8) 0.0168
oM 0.1775(1) 0.2402(9) 0.7869(5) 0.0137
0O(8) 0.2465(2) i 0.9437(8) 0.0183
) 0.2332(2) 1 1.3734(8) 0.0135
Q(10) 0.1467(2) 0 0.5395(8) 0.0151
oun 0.1103(2) 0 0.8298(8) 0.0180
O20)¢ 0.4625(3) 0.254(4) 0.980(2) 0.060(4)°
oyt 1.033(D) H 0.041(5) 0.036(8)°

¢ Ueg (AY) = (U3 LLUY™.
® Fractional site occupancy = 4.
‘ U\'so (Az)

4 Fractional site occupancy = 4.
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TABLE 5

Selected Bond Distances (&) for Bay(VO){PO,),(HPO,),; - 3H,0
Ba{hH)-G(3) 2.736(T) Ba(1)-0O(5) 28234 » 2
Ba(1)-0(7) 2.796(4) x 2 Ba(1)-0(9) 3.045(3) x 2
Ba(1)-0(9) 2.662(6) Ba(1)-0(10)  2.997(4) x 2
Ba(2)-0O(1) 2.853(5) x 2 Ba(2)-0(3) 2.876(3) x 2
Ba(2)-0(5) 3.004(5) x 2 Ba(2)-0(6) 3.158(4) x 2
Ba(2)-0(10)  2.823(6) Ba(2)-O(11)  3.044(7)
Ba(2)-0(20)  2.90(2) x 2 Ba()-0(21)  2.63(4)
V(1)-0(1) 1.993(5) x 4 V(H-0(2) 1.902(8) x 2
V(2)-0(5) 2.030(4) x 2 V(2)-0(6) 1.595(7)
V(2)-0(7 1.995(4) x 2 V(2)-0(8) 2.257(N
P(1)-0(1) 1.514(5) x 2 P(1)-0(3) 1.516(7)
P(1)-0(4) 1.606(8)

P(2)-0(3) 1.543(5) x 2 P(2)-0(8) 1.553(7)
P(2)-0(9) 1.513(6)

P(3)-O(D 1.525(5) % 2 PO)-0O(1) 1.502{6)
P(3)-0O{11) 1.591(7)

P(4)-0(2) 1.56(2) P(4)-0{20)¢ 1642) x 2
P(4)-0Q1)? 1.59(4)

? Less reliable value, due to disorder.

which propagate in the b-direction. Ba(1) and Ba(2) poly-
hedra are connected via O€3) and O(10), and form their
own infinite b-direction column.

V(1), P(1), and P(4), together with their associated oxy-
gen atoms (Fig. 9), form the first type of polyhedral chain
in Bag(VO),(PO,,(HPQ,),, - 3H,0. These chains, com-
prised of V(1)O, octahedra linked together by pairs of
P(1)O, tetrahedra, and crosslinked by disordered P(4)0,
groups, propagate in the b-direction. The V(1) octahedron
appears to be unusual for V!V in the absence of a short
(d < 1.6 A) V=0 bond typically found for V!¥-containing
materials (26). We believe that this central V(1) site in
Bay(VO),(PO,),(HPO,),, - 3H,0 is an average of superim-
posed O-V==0 and O=V-0 configurations: The thermal
factor of the V(1) atom is highly anisotropic along the
0(2)-V(1)-0(2') axis (Fig. 9}, indicating probable disor-
der. In the related Ba,VO(PQ,),  H,O (27), which has a
similar V/P/O chain configuration to the V(DO/P(1)O,
chain in Bag(VO),(PO,),(HPO,),, - 3H,0, the vanadium
atom is disordered over two adjacent positions (apparent
V.- -V separation ~0.7 A), due to superimposed
H,0-¥=0 and O=V-0OH, configurations: However, the
situation in Bag(VO}(PO,),(HPO,),,-3H,O is further
complicated by the fact that the O(2) atom represents up
to three chemically different types of oxygen atom: a
V(1=0(2) terminal atom, a possible V(1)-O(2)H, water
molecule oxygen atom, and a V(1)-O(2)-P(4) bridging O

atom. The V(1)/P(1)/P(4) chain has 2/m symmetry along
b, about the vanadium centers, at least as represented by
this simplified structural model.

. The other four V(1) oxygen-atom vertices link to four
different phosphorus atoms, and a fairly regular octahe-
dral geometry [d, (V-0) = 1.955(3) A] results. A BVS
analysis {21) of the V(1)O, coordination sphere (Table 5)
yielded a value of 3.4, apparently intermediate between
(ideal) VI and V!V character. However, if the disorder
effect described in the above paragraph is considered, by
assuming bond lengths of 1.604 A for the V==0 link, and
2.200 A for the rrans V-0 bond (split from 2 x 1.902 A
for the disordered case) and 4 x 1.993 A for the unchanged
V-0-Pbonds, then a typical V1Y BVS of ~4.1 is obtained.
This is consistent with the magnetic susceptibility data
(vide infra) which indicate that only V!V is present in
Bay(VO)4(PO,),(HPO,),, - 3H,0.

The V(2)/P(2)/P(3) double chains (Fig. 10) are quite
distinct from the first chain, although both are aligned in
the b-direction. A similar double phosphate bridge, viathe
P(2)- and P(3)-centered groups link adjacent V(2) centers.
However, V(2) does possess a short, vanadyl V=0 bond
[d = 1.596(7) A to O(6), while the long trans V(2)-O(8)
bond [d = 2.258(7) A] connects [via P(2)] to a similar
double-bridged chain propagating one-half step out of

TABLE 6

Selected Bond Angles (°) for Bay(VO)4(PO,),(HPO,),, - 3H,0
O)-v(1)-0O() 1807 O(H-V(1)-0(1) 95.7(3)
O(DH-V(1)-0(1) 84.3(3) O(-V{(1}-0(2) 90.5(3)
O(D-V{(1)-0(2) 89.5(3) O2)-V(1)-0(2) 180¥
0(5)-V(2)-0(5) 84.9(3) O(5)-V(2)-0(6) 94.2(2)
0(5)-V(2)-0(7) 166.2(2) O5)-V(2)-0(7) 93.2(2)
Q6)-V(2)-0(7) 99.6(2) QM- V{-O(T) 85.4(3)
0O(5)-V(2)-0(8) 83.1(2) 0)-V(2)-0(8) 176.4(3)
O(N-V(2)-0(8) 23.1(2)
O(H-P(1)-0O(1) 113.5(4) O(1)-P(1}-0(3) 108.8(2)
O(1)-P(1)-0(4) 108.4(3) O(3)-P(1)-0(4) 108.9(5)
O(5)-P(2}-0(5) 106.3(4) O(5)-P(2)-0(8) 109.6(2)
O(5)-P(2)-0(9) 109.0(2) O(8)-P(2)-0(3) 113.0(4)
ON-PH-ON 110.244) O(NH-P{3H-O0U0) 110.9(2)
O(N-PG)-0(11) 107.002) O(10)-P(3)-0(11) 110.8(4)
02)-P(4)-0(20) 113.0{9) 0(2)-P(4)-0(20) 110.5(8)
0Q20)-P(4)-020) 102.9(14) O(2)-P(4)-0(21) 111.4(17)
0(20)-P(4)-0(21) 108.0(11) O20)-P(4)-0(21) 101.1(19}
V(1}-0(1)-P(1) 145.3(3) V(1)-0(2)-P(4) 146.0(8)
V(2)-0(5)-P(2) 135.4(3) V(2)-0(N)-P(3) 138.4(3)
V{(2)-0(8)-P(2) 144.4(4)

* By symmetry.
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Ba{1)

FIG.5. ORTEP view of the V/P/O asymmetric unit of Bag(V0),(PO,),(HPO,);; - 3H,0, showing the atom-labeling scheme (50% thermal ellipses).

phase with the first chain. Terminal P-O links to 0(9),
0(10), and O(11) bond to no other V/P species, but do
form part of the Ba’>* coordination polyhedron (Table 5).
O(11) is probably protonated, as indicated by the length-
ened P(3)-0O(11) bond distance (Table 5). A BVS calcula-
tion for V(2) gave a satisfactory value of 4.1 (expected
4.0), assuming that the site has V!V character. Overall,
this second chain has 2,/m symmetry along b, and is
completely isolated from the first chain, except for non-
bonding links via barium cations.

INFRARED SPECTROSCOPY

The IR spectrum of Ba(VO),(Se0,),(HSeQ;), is shown
in Fig. 11. The band at 950 cm~! is due to V=0, while
bands at 825, 781, and 700 cm ! arise from selenite-group
vibrations (28). The sharp resonance at 1217 cm™' proba-
bly arises from an Se—O-H vibration. The IR spectrum

of Bag(VO)(PO,),(HPO)),, - 3H,0 is shown in Fig. 12. As
well as characteristic PO, and V=0 bands (1106 cm™’,
967 ¢cm~!, and 590 cm™!) the data show a band arising
from the presence of a coordinated water molecule (v =
1636 cm ™), which may be bonded to either Ba or V.

MAGNETIC MEASUREMENTS

Susceptibility data for Ba(V0),(SeO;),(HSeO,), (Fig.
13) showed perfect Curie behavior over the complete
4-300 K range, with no evidence for any cooperative
magnetic phenomena. The data were modeled by using a
Curie—-Weiss type law; x = xp + C/(T — 6}, where x
is the measured magnetic susceptibility, C is the Curie
constant, Tthe temperature (K), and 8 the Weiss constant.
The model yield values of x, = —35.685 x 107 emu/g,
C = 1.115 x 1073 emu-K/g, and # = 0 K, corresponding

FIG. 6. Unit-cell packing of Bag(VO)(PO,,(HPO,),; - 3H,0, viewed down the b-direction. The P(4)0, phosphate groups are disordered (see

text).
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0(57)

0107
0(3)
FIG. 7. Tenfold Ba(l}) coordination polyhedron in BaygVO),

(PO)(HPO,),, - 3H;O, with non-bonding O - ‘O contacts <3.6 A indi-
cated by thin lines (see text).

10 a ey of 1.86 BM (spin-only value for vanadium(lV) =
1.73 BM).

Bay(VO),(PO,),(HPO,),, - 3H,O shows a maximum in
its inverse susceptibility at ~20 K (Fig. 14}, presumably
corresponding to antiferromagnetic ordering, along ¢ither
the V(1)!¥ chain or the double chain of V(2)!¥ centers. In
the range 100-300 K, the data were modeled by
a Curie—Weiss law, resulting in parameters of x, =
4729 x 1077 emu/g, C = 7.578 x 10* emu-K/g, and
8 = —30.4 K. The higher temperature data yielded a
Mesr = 2.92 BM in good agreement with the predicted value
of 3.00 BM, for three noninteracting spin-only V'V sites,

0(5") 0(5)

0(3)

2(20)

0213

FIG. 8. Thirteenfold Ba(2) coordination polyhedron in Bay(VO),
(PO, (HPO,),, - 3H,0, with non-bonding O- - -O contacts <4.0 A indi-
cated by thin lines, Disordered oxygen atoms {Table 4) are represented
by larger spheres.

FIG. 9. View of the vanadium(IV)-containing ¥(1)/P(1) chain in
Bag(VO)(PO,{HPOy)y - 3H,0; the chain axis points in the b-direction.
Disordered P(4)0, groups are attached to oxygen atom O{2),

The closest vanadium—vanadium distances in the two V/
P/O chains are identical: 5.208 A for both the V(1) chain
and the V(2) double chain. A second V(2)-V(2) contact
at 5.39 A is present in the V(2) double chain. These con-
tacts are far too large to allow for direct, through-space
magnetic coupling between adjacent V atoms, thus the
superexchange pathway must be via V-O-P-OQ'-V’
links. Antiferromagnetic ordering at low temperature
(~10K)is also observed in Ba,VO(POQ,), - H,O (27), which
has a similar one-dimensional V/P/O configuration to the
V(1) chain in Bay(VO),(PO,),(HPO,),, - 3H,0.

CONCLUSION

Ba(V0),(Se0;),(HSe0;), and Bag(VO)(PO,),
(HPO,),, - 3H,0 further expand the wide variety of known
framework phases containing octahedral vanadium cen-

FIG. 10. View of the vanadium{IV)-containing V(2)/P(2)/P(3) chain
in BagVO)s(PO,),(HPOQ,},, - 3H,0.
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FIG. 11. Infrared spectrum of Ba(VO),(Se(y),(HSe(O,),, with major

bands labeled.

ters and other linking polyhedra. As expected, in Ba(VO),
(3€0,),(HSeO;),, Se0; ions form triangular bridges be-
tween vanadium centers, although protonated Se—OH ter-
minal bonds may also occur. A three-dimensional struc-
ture results, and a pure V'Y character is well defined for the
vanadium centers in this phase. No cooperative magnetic
ordering occurs above 4 K,

In Bag(VO)(PO,),(HPQ,),, - 3H,0, the combination of
V™0, centers with (H)PO, tetrahedra leads to a structure
with a strong one-dimensional character, with two com-
pletely separate types of V/P/O chains formed. One of
the V sites is disordered between O=V-0 and O0-v=0

105
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FIG. 12, Infrared spectrum of BagVO){PO,),(HPO,),, - 3H,0, with

major bands labeled, including the bound-water resonance at 1636 cm™!
(see text).
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FIG. 13.

Magnetic susceptibility data for Ba(VOL(Se0,),(HSeO,),,
plotted as 1/x versus temperature.

configurations, which wrongly suggests a partial VI char-
acter: Magnetic susceptibility data indicate only V'V is
present in this material, and antiferromagnetic ordering
occurs below ~20 K. '

Interesting related structures include the novel VI IV
phases K(VO)V(HPO,)(H,0), (11} and KyVO),V
(PO),(HPO)(H,PO,(H,0), (29). Both of these materials
contain structurally distinct VI and V!V octahedral cen-
ters; the latter phase forms a “‘staircase’” layered struc-
ture. Our own synthetic and structural studies of complex
vanadium selenities and phosphates are continuing and
will be reported later.

L | i
0 1¢0 200 300
T (K

FIG.
(PO)(HPO),, - 3H,0.

14. Plot of 1/x versus temperature for Bag(VO);
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